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Abstract. The sfermion-mass spectrum of the minimal supersymmetric standard model is investigated
at the one-loop level. An on-shell scheme has been specified for renormalization of the basic breaking
parameters of the sfermionic sector. Owing to SU(2)-invariance, the soft-breaking mass parameters of the
left-chiral scalar fermions of each isospin doublet are identical. Thus, one of the sfermion masses of each
doublet can be expressed in terms of the other masses and receives a mass shift at the one-loop level with
respect to the lowest-order value, which can be of O(10 GeV). Both strong and electroweak contributions
have been calculated for scalar quarks and leptons.

1 Introduction

The next generation of high energy colliders will permit
the discovery of supersymmetric particles and accurate
measurements of their properties [1]. From a precise de-
termination of masses, cross sections and asymmetries the
fundamental parameters of the underlying theory [2] can
be reconstructed. This knowledge will provide insight into
the supersymmetry breaking mechanism and its relation
to grand unification.

The reconstruction of the basic SUSY-parameters from
the experimental data requires reliable relations between
physical observables and fundamental parameters. Higher-
order corrections to tree-level relations have to be calcu-
lated and have to be taken into account when transforming
from physical parameters to the fundamental ones.

In this paper, we derive the one-loop contributions to
the sfermion-mass spectrum. An on-shell renormalization
scheme is applied where all masses are treated as pole
masses. Due to the SU(2)-symmetry, the soft-breaking pa-
rameters of the supersymmetric partners of the left-handed
fermions are identical. Hence, in each generation of up- and
down-type sfermions one sfermion mass is dependent on
the remaining masses in that generation. Therefore, on
the one-loop level the pole mass of that sfermion receives
a shift with respect to its tree-level value. This shift has
been calculated including the complete set of one-loop dia-
grams. As a by-product, counterterms for the soft-breaking
parameters of the sfermionic sector are derived and are be-
ing implemented into the MSSM version of FeynArts [3].
Since these counterterms are specified for the basic break-
ing parameters, they are different from those of [4], where
another way of renormalization has been performed that
consists of introducing counterterms directly for the phys-
ical parameters, i.e. masses and mixing angles instead of
the soft-breaking parameters.

Beginning with a review of the sfermion-mass matrix
on Born level in Sect. 2, renormalization conditions are
specified and explicit mass counterterms are calculated in
Sect. 3. In Sect. 4, we present our numerical results.

2 The scalar-fermion sector at the Born level

In the MSSM, supersymmetry breaking is implemented
by explicitly adding soft-breaking terms to the symmetric
Lagrangian. The sfermion-mass terms of the Lagrangian,
for a given species of sfermions f̃ , can be written as the
bilinear expression

Lf̃−mass = −
(
f̃+

L , f̃+
R

)
Mf̃

(
f̃L

f̃R

)
, (1)

with Mf̃ as the sfermion-mass matrix squared (see top of
next page).
Here the quantities M2

L, M2
f̃R

and Af denote the soft-
breaking parameters. In this paper we treat these param-
eter as real quantities. tanβ = v2

v1
denotes the ratio of the

Higgs vacuum expectation values v1 and v2, and µ is the
supersymmetric Higgs mass parameter. As abbreviations,
c2β = cos(2β) and sW = sin θW are used where θW is the
weak mixing angle. The parameter κ is defined as κ = cot β
for up-type squarks and κ = tanβ for down-type squarks
and electron-type sleptons. mf is the mass of the fermion
f , Qf the electromagnetic charge, and T 3

f the isospin of f .
As far as we do not consider right-handed neutrinos

within the MSSM, the corresponding superpartners do not
exist. Thus, for sneutrinos the sfermion-mass matrix is 1-
dimensional, with only the left-handed entry of (2).

The mass matrix (2) can be diagonalized by a trans-
formation of the f̃L,R fields with the help of a unitary
matrix Uf̃ ,
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Mf̃ =


m2

f + M2
L + M2

Zc2β

(
T 3

f − Qfs2
W

)
mf (Af − µ∗κ)

mf

(
A∗

f − µκ
)

m2
f + M2

f̃R
+ M2

Zc2βQfs2
W


 , (2)

(
f̃1

f̃2

)
= Uf̃

(
f̃L

f̃R

)
,

(
f̃L

f̃R

)
= U+

f̃

(
f̃1

f̃2

)
. (3)

In our case of real parameters, Uf̃ can be parameterized
in terms of the mixing angle θf̃ ,

Uf̃ =

(
cos θf̃ sin θf̃

− sin θf̃ cos θf̃

)
. (4)

In the (1, 2)-basis, the squared-mass matrix is diagonal,

Df̃ = Uf̃Mf̃U+
f̃

=


m2

f̃1
0

0 m2
f̃2


 , (5)

with the eigenvalues m2
f̃1

and m2
f̃2

given by

m2
f̃1,2

=
1
2

(
M2

L + M2
f̃R

)
+ m2

f +
1
2
T 3

f M2
Zc2β

±1
2

{[
M2

L − M2
f̃R

+ M2
Zc2β

(
T 3

f − 2Qfs2
W
)]2

+ 4m2
f |Af − µκ|2

}1/2

. (6)

3 The scalar-fermion sector
at the one-loop level

For renormalization of the sfermion sector, counterterms
for the mass matrix (2) are introduced,

Mf̃ → Mf̃ + δMf̃ , (7)

where δMf̃ contains the counterterms of the parameters
appearing in (2).

By field renormalization, the sfermion fields are re-
placed by renormalized fields and Z-factors,(

f̃L

f̃R

)
→
(
� +

1
2

δZf̃

)(
f̃L

f̃R

)
,

with

δZf̃ =


δZf̃ L

0

0 δZf̃ R


 . (8)

This assignment forms the minimal set of renormalization
constants satisfying the symmetry relations [5] and is suf-
ficient to absorb all the divergencies.

The renormalization transformations (7) and (8), to-
gether with (3), yield the renormalized sfermion self-ener-
gies Σ̂f̃ from the unrenormalized ones, Σf̃ , according to

Σ̂f̃

(
k2) = Σf̃

(
k2)+ k2δZ̃f̃ − 1

2

(
δZ̃f̃Df̃ + Df̃ δZ̃f̃

)

−Uf̃ δMf̃U+
f̃

. (9)

Σf̃ denotes the matrix of the diagonal and non-diagonal
self-energies for f̃1,2. δZ̃f̃ is used as an abbreviation, δZ̃f̃ =
Uf̃ δZf̃U+

f̃
.

It is convenient to introduce, instead of (3), a more
general transformation at the one-loop level, replacing

Uf̃ → Rf̃ =
(
� +

1
2

δZUf̃

)
Uf̃ , (10)

with an additional UV-finite matrix δZUf̃
. This procedure

yields a non-diagonal Z-matrix for the sfermion fields with
four independent entries. In that case the renormalized
self-energies are given by

Σ̂f̃

(
k2) = Σf̃

(
k2)+

1
2
k2
(

δZ̆+
f̃

+ δZ̆f̃

)

−1
2

(
δZ̆+

f̃
Df̃ + Df̃ δZ̆f̃

)
− Uf̃ δMf̃U+

f̃
, (11)

with

δZ̆f̃ = Uf̃ δZf̃U+
f̃

− δZUf̃
=

(
δZ̆f̃11

δZ̆f̃12

δZ̆f̃21
δZ̆f̃22

)
. (12)

This procedure, in analogy to the one for renormalization
of the chargino and neutralino sector performed in [6], will
be the basis of the forthcoming discussion.

3.1 Renormalization conditions

All independent parameters in the sfermion-mass matrix
Mf̃ in (2) are replaced by renormalized parameters and the
corresponding counterterms, which form the counterterm
matrix δMf̃ . Only the counterterms of the soft-breaking
parameters M2

L, M2
f̃R

and Af have to be determined within
the sfermion sector; the others follow from the gauge, gaug-
ino, Higgs and fermion sectors.

For one generation of squarks, neglecting mixing be-
tween generations, there exists one mass matrix for the
u-type squarks and one for the d-type squarks. Because of
SU(2)-invariance, the parameter MLq̃

is the same for the
u- and the d-type squarks. Therefore, in one generation of
squarks, there are five parameters M2

Lq̃
, M2

ũR
, M2

d̃R
, Au, Ad

with counterterms to be determined within the sfermion
sector. Hence, five renormalization conditions are required.

On-shell mass-renormalization conditions can be im-
posed on both mass eigenstates of either the u- or d-type
sfermions. Here we choose the isospin “+” system, with
the on-shell conditions expressed in terms of the diagonal
entries of (11),

Re Σ̂ũii

(
m2

ũi

)
= 0 with i = 1, 2 . (13)
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For the d̃ system, the on-shell condition is imposed for the
d̃2-squarks,

Re Σ̂d̃22

(
m2

d̃2

)
= 0 , (14)

as long as d̃2 �= ±d̃L. According to (6), we have chosen
the heavier squark to be d̃1 and the lighter one to be d̃2,
hence mixing angles θf̃ > | π

4 | can occur in the matrix Uf̃ in
(4). In case of d̃2 = ±d̃L, corresponding to a mixing angle
θd̃ = ∓ π

2 , the self-energy Σ̂d̃22
contains only the counter-

term δM2
Lq̃

which is already fixed by one of the conditions
(13). The renormalization condition (14) has to be replaced
in that case by

Re Σ̂d̃11

(
m2

d̃1

)
= 0. (15)

The three mass-renormalization conditions determine es-
sentially the counterterms for the diagonal mass parame-
ters, M2

L, M2
ũR

and M2
d̃R

. The non-diagonal counterterms
δAu and δAd can be fixed by imposing

Re Σ̂ũ12

(
m2

ũ1

)
+ Re Σ̂ũ12

(
m2

ũ2

)
= 0 (16)

Re Σ̂d̃12

(
m2

d̃1

)
+ Re Σ̂d̃12

(
m2

d̃2

)
= 0. (17)

The diagonal Z-factors of the field-renormalization matrix
(10) can be determined by the condition that the residues
of the sfermion propagators are unity,

Re
∂Σ̂f̃ii

(
k2
)

∂k2

∣∣∣∣
k2=m2

f̃i

= 0 (18)

for i = 1, 2 and f = u, d .

There are two more non-diagonal Z-factors of (10) for each,
u- and d-type, sfermion pair at our disposal. They can be
exploited to have zero mixing on each mass-shell. Imposing

Re Σ̂f̃12

(
m2

f̃2

)
= 0 for f = u, d , (19)

yields, together with (16) and (17), diagonal self-energies
for each on-shell momentum k2. Yet, one Z-factor for each
pair of sfermions remains undetermined. With the conve-
nient choice

δZ̆f̃12
= δZ̆f̃21

for f = u, d (20)

one obtains by solving (16)–(20)

δZ̆f̃ ii
= − Re

∂Σf̃ii

(
k2
)

∂k2

∣∣∣∣
k2=m2

f̃i

for i = 1, 2 and f = u, d , (21)

δZ̆f̃12
= δZ̆f̃21

= −
Re Σf̃12

(
m2

f̃1

)
− Re Σf̃12

(
m2

f̃2

)
m2

f̃1
− m2

f̃2

for f = u, d . (22)

For sleptons, the renormalization procedure can be applied
analogously. Since we have not introduced right-handed
neutrinos, only the counterterms for the soft-breaking pa-
rameters M2

Ll̃
, M2

ẽR
and Ae have to be determined. Choos-

ing the conditions in analogy to (13), (14) and (17) we get

Re Σ̂ν̃

(
m2

ν̃

)
= 0 , Re Σ̂ẽ2

(
m2

ẽ2

)
= 0 , (23)

Re Σ̂ẽ12

(
m2

ẽ1

)
+ Re Σ̂ẽ12

(
m2

ẽ2

)
= 0 . (24)

With the field and parameter renormalization constants
determined in the way described above, the renormaliza-
tion of the sfermion sector is completed. The counterterms
are being implemented into the MSSM version of Feyn-
Arts [3] for completion at the one-loop level.

3.2 Determination of the renormalization constants

The diagonal entries of the matrix (11) of the renormalized
self-energies, for on-shell values of k2, are given by (i = 1, 2)

Σ̂f̃ ii

(
m2

f̃i

)
= Σf̃ ii

(
m2

f̃i

)
−
(
Uf̃ δMf̃ U+

f̃

)
ii

= Σf̃ ii

(
m2

f̃i

)
− δm2

f̃i
. (25)

Solving the set of (13) and (14) for the mass renormaliza-
tion, three out of the four squark-mass counterterms are
determined as follows:

δm2
ũ1

= Re Σũ11

(
m2

ũ1

)
, (26)

δm2
ũ2

= Re Σũ22

(
m2

ũ2

)
, (27)

δm2
d̃2

= Re Σd̃22

(
m2

d̃2

)
. (28)

The fourth mass counterterm is no longer independent
and can be expressed by the other counterterms of the
soft-breaking parameters in the following way:

δm2
d̃1

= U2
d̃11

δM2
Lq̃

+ 2Ud̃11
Ud̃12

δAd + U2
d̃12

δM2
d̃R

(29)

+U2
d̃11

δCd̃11
+ 2Ud̃11

Ud̃12
δCd̃12

+ U2
d̃12

δCd̃22
,

with

δCf̃11
= 2mf δmf − QfM2

Z cos(2β) δ sin2(θW)

+
(
T 3

f − Qf sin2(θW)
)(

cos(2β) δM2
Z

+ M2
Z δ cos(2β)

)
, (30)

δCf̃12
= δCf̃21

= δmf (Af − µκ) − mfκ δµ − mfµ δκ

with κ =


cot β for up-type squarks, f = u ,

tanβ for down-type squarks, f = d ,
(31)

δCf̃22
= 2mf δmf + Qf

(
M2

Z cos(2β) δ sin2(θW)

+ sin2(θW) cos(2β) δM2
Z

+ M2
Z sin2(θW) δ cos(2β)

)
. (32)
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The counterterms δM2
Lq̃

, δM2
ũR,d̃R

, δAu,d for the basic pa-
rameters of the mass matrix Mf̃ in (2) can be obtained
from (25) and the non-diagonal entry δYf̃12

=(Uf̃ δMf̃U+
f̃

)
12 as follows:

δM2
Lq̃

= U2
ũ11

δm2
ũ1

+ U2
ũ12

δm2
ũ2

− 2Uũ12Uũ22δYũ12

−δCũ11 , (33)

δM2
ũR

= U2
ũ12

δm2
ũ1

+ U2
ũ11

δm2
ũ2

+ 2Uũ12Uũ22δYũ12

−δCũ22 , (34)

δM2
d̃R

=
U2

d̃11
− U2

d̃12

U2
d̃11

δm2
d̃2

+ 2
Ud̃12

Ud̃22

U2
d̃11

δYd̃12

+
U2

d̃12
U2

ũ11

U2
d̃11

δm2
ũ1

+
U2

d̃12
U2

ũ12

U2
d̃11

δm2
ũ2

−2
U2

d̃12
Uũ12Uũ22

U2
d̃11

δYũ12 − δCd̃22

+
U2

d̃12

U2
d̃11

(
δCd̃11

− δCũ11

)
, (35)

δAu =
1

mu

[
Uũ11Uũ12

(
δm2

ũ1
− δm2

ũ2

)
(36)

+ (Uũ11Uũ22 + Uũ12Uũ21) δYũ12 − δCũ12

]
,

δAd =
1

md

[
−Ud̃12

Ud̃11

δm2
d̃2

+
Ud̃22

Ud̃11

δYd̃12

+
Ud̃12

U2
ũ11

Ud̃11

δm2
ũ1

+
Ud̃12

U2
ũ12

Ud̃11

δm2
ũ2

− 2
Ud̃12

Uũ12Uũ22

Ud̃11

δYũ12 − δCd̃12

+
Ud̃12

Ud̃11

(
δCd̃11

− δCũ11

)]
. (37)

δYf̃12
is determined with the help of (16), (17) and (22)

to be

δYf̃12
=

1
2

(
Re Σf̃12

(
m2

f̃1

)
+ Re Σf̃12

(
m2

f̃2

))
for f = u, d . (38)

Inserting the expressions for δM2
Lq̃

, δM2
d̃R

and δAd into
(29), the mass counterterm δm2

d̃1
can be written as

δm2
d̃1

= −
U2

d̃12

U2
d̃11

δm2
d̃2

+ 2
Ud̃12

Ud̃22

U2
d̃11

δYd̃12
+

U2
ũ11

U2
d̃11

δm2
ũ1

+
U2

ũ12

U2
d̃11

δm2
ũ2

− 2
Uũ12Uũ22

U2
d̃11

δYũ12

+
1

U2
d̃11

(
δCd̃11

− δCũ11

)
. (39)

This relation contains, besides those counterterms deter-
mined within the sfermion sector, also renormalization
constants that have to be taken from other sectors: the
fermion-mass counterterm δmf , the gauge-boson mass
counterterms δM2

W,Z , and δ tanβ. The renormalization of
the electroweak mixing angle, δ sin2 θW, follows from the
relation sin2 θW = 1 − M2

W

M2
Z

(actually, in the combination

of (39), δM2
Z drops out). δµ can be obtained from renor-

malization in the chargino sector and is given explicitly
in [6]; δm2

d̃1
is, however, independent of δCf̃12

and hence
also independent of δµ.

The counterterms δmf , δ tanβ and δM2
W,Z are deter-

mined from the following conditions.
(i) On-shell renormalization of the fermion mass yields [7]

δmf = (40)

1
2
mf

(
Re ΣfL

(
m2

f

)
+ Re ΣfR

(
m2

f

)
+ 2 Re ΣfS

(
m2

f

))
in terms of the fermion self-energy

Σf (k) = (41)

ΣfL

(
k2) �kPL + ΣfR

(
k2) �kPR + mfΣfS

(
k2) .

(ii) On-shell renormalization of the gauge-boson masses
determines the mass counterterms

δM2
V = Re ΣV

(
M2

V

)
for V = W, Z , (42)

in terms of the vector-boson self-energies ΣV (k2).
(iii) Vanishing A0–Z-mixing for an on-shell A0-boson de-
termines the counterterm of tanβ according to [8]

δ tanβ =
1

2MZ cos2 β
Im ΣA0Z

(
M2

A

)
. (43)

Another option is to renormalize tanβ in the DR-scheme
[9] where only the UV-singular part of (43) is taken into
account, which has the advantage of avoiding large finite
contributions and providing a gauge invariant and pro-
cess independent counterterm [10]. Comparing both renor-
malization schemes, the numerical results for the sfermion
masses differ by at most O(10 MeV). A potentially large
finite part of (43) for large values of tanβ is suppressed
by a factor tanβ/(1+tan2 β)2 in the sfermion-mass coun-
terterms, which keeps the result stable.

After this specification of all the renormalization con-
stants the squark sector is completed at the one-loop level.
Another way of renormalization, performed in [4], consists
of introducing counterterms directly for the physical pa-
rameters, i.e. masses and mixing angles, instead of the
soft-breaking parameters. In that case also the transfor-
mation matrix Uf̃ in (4) has to be renormalized by the
mixing angle counterterm, i.e. through θf̃ → θf̃ + δθf̃ ,
whereas in our case Uf̃ is not affected. Previous studies
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of the sfermion-mass spectrum [11] were done in the DR-
scheme with running parameters whereby the MSSM pa-
rameter space is restricted by unification assumptions.

The treatment of one generation of sleptons is similar
to the one of squarks. Two of the three slepton masses are
fixed by on-shell conditions, and the third one is dependent
on the other counterterms,

δm2
ẽ1

= U2
ẽ11

δM2
Ll̃

+ 2Uẽ11Uẽ12δAe + U2
ẽ12

δM2
ẽR

+U2
ẽ11

δCẽ11 + 2Uẽ11Uẽ12δCẽ12 + U2
ẽ12

δCẽ22 .(44)

The quantities δM2
Ll̃

, δM2
ẽR

and δAe follow from (23) and
(24) and are explicitly given by

δM2
Ll̃

= δm2
ν̃ − δCν̃ , (45)

δM2
ẽR

=
U2

ẽ11
− U2

ẽ12

U2
ẽ11

δm2
ẽ2

+ 2
Uẽ12Uẽ22

U2
ẽ11

δYẽ12 +
U2

ẽ12

U2
ẽ11

δm2
ν̃

−δCẽ22 +
U2

ẽ12

U2
ẽ11

(δCẽ11 − δCν̃) , (46)

δAe =
1

me

[
−Uẽ12

Uẽ11

δm2
ẽ2

+
Uẽ22

Uẽ11

δYẽ12 +
Uẽ12

Uẽ11

δm2
ν̃

− δCẽ12 +
Uẽ12

Uẽ11

(δCẽ11 − δCν̃)
]

, (47)

with

δYẽ12 =
1
2
(
Re Σẽ12

(
m2

ẽ1

)
+ Re Σẽ12

(
m2

ẽ2

))
, (48)

δCν̃ =
1
2
(
cos(2β)δM2

Z + M2
Zδ cos(2β)

)
, (49)

δCẽ11 = 2meδme + M2
Z cos(2β)δ sin2(θW) (50)

−
(

1
2

− sin2(θW)
)(

cos(2β)δM2
Z + M2

Zδ cos(2β)
)
,

δCẽ12 = δCẽ21 = δme (Ae − µ tanβ) − me tanβ δµ

− meµ δ tanβ , (51)

δCẽ22 = 2meδme − M2
Z cos(2β)δ sin2(θW)

− sin2(θW) cos(2β)δM2
Z

−M2
Z sin2(θW)δ cos(2β) . (52)

These expressions complete the renormalization also in the
slepton sector.

3.3 Mass corrections

The sfermion masses fixed via the on-shell conditions (13)
and (14) for squarks and (23) for sleptons do not receive
any corrections at one-loop order. The remaining mass,
in each squark or slepton generation, is different at tree
level and one-loop order. The counterterm (29) or (44),
respectively, absorbs the divergence of the corresponding

self-energy, but it leaves a finite contribution. The shifts
∆m2

d̃1
and ∆m2

ẽ1
for the pole masses are given by

∆m2
d̃1

= δm2
d̃1

− Re Σd̃11
(m2

d̃1
)

and

∆m2
ẽ1

= δm2
ẽ1

− Re Σẽ11

(
m2

ẽ1

)
, (54)

yielding one-loop masses according to

m2
d̃11−Loop = m2

d̃1Born
+ ∆m2

d̃1

and

m2
ẽ11−Loop = m2

ẽ1Born
+ ∆m2

ẽ1
, (56)

where md̃1Born
and mẽ1Born

are the masses in the Born ap-
proximation. In the self-energies Σd̃11

and Σẽ11 , the masses
can be taken as the lowest-order masses.

4 Numerical results and discussion

The self-energies were calculated with the help of the pro-
grams FeynArts, FormCalc and LoopTools [3,12], with the
method of “constrained differential renormalization” [13]
for regularization. This method is equivalent to the proce-
dure of dimensional reduction [14].

In the following, we illustrate the effect of the one-loop
contributions for specific examples in Figs. 1 to 3. Unless
stated otherwise, the default values for the parameters
listed in Table 1 are used.

The size of the mass shift for the three squark gener-
ations is displayed in Fig. 1, together with the correction
to the τ̃1 mass as an example for the sleptons. Because of
the presence of the fermion mass in the off-diagonal entry
of (2), the dependence of the sfermion masses on tan β
is strongest for the third generation. The mass shifts are
nearly independent of tanβ for all the particles. They are
rather small (0.6 GeV) in the first two squark generations,
but they are much larger in the third generation. The Born
mass of the b̃1-squark is enhanced significantly by up to
16 GeV (5%) at the one-loop level. The mass shift for slep-
tons is of electroweak origin only and is hence rather small,
for the τ̃1-slepton only 0.2 GeV (or 0.1%).

The various contributions to the one-loop mass shift
versus tan β are shown in Fig. 2, for the case of the b̃1
squark: the Born mass and the one-loop mass, together
with the individual parts from the strong and the elec-
troweak interactions. The biggest shift originates from the
strong interaction, i.e. by virtual squarks, gluinos, quarks
and gluons, and amounts to approximately 17 GeV (5%)
and 6.5 GeV (1.5%) for MLq̃3

= 300 GeV and MLq̃3
=

500 GeV, respectively.
The electroweak contribution can become also more

sizable, as the example of the right part in Fig. 2 shows,
with MLq̃3

= 500 GeV, where a shift of 2.3 GeV is observed.
The electroweak contributions result from virtual sleptons,
squarks, charginos, neutralinos and quarks, Higgs-, W -
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Fig. 1. Born (dotted line) and one-loop masses (solid line) as a function of tan β. In the first row the masses of the d̃1-squark
and the s̃1-squark are shown, in the second row the masses of the b̃1-squark and the τ̃1-slepton. The parameters have been
chosen as Mf̃R

= ML = Af = 300 GeV for all generations

Fig. 2. Total one-loop mass (solid line) of the b̃1-particle as a function of tan β in comparison to the Born mass (dashed line) and
the one-loop masses with either strong (dotted line) and electroweak (line of circles) contributions. The soft-breaking parameters
are chosen as MLq̃3

= 300 GeV in the left and MLq̃3
= 500 GeV in the right figure, and Mf̃R

= ML
f̃ �=q̃3

= Af = 300 GeV in
both

Table 1. If not mentioned explicitly in the text, the following default set
of parameters is used

Parameters of the Higgs sector

MA = 150 GeV tan β = 10 µ = 100 GeV

(Mass of the A0-boson)

soft-breaking parameters

for the gauginos: for the sfermions:

M1 =
5
3

sin2 θW

cos2 θW
M2 ML = ML{q̃i,l̃i} = 300 GeV with i = 1, 2, 3

M2 = 200 GeV Mf̃R
= 300 GeV with f = u, c, t, d, s, b, e, µ, τ

M3 =
αs

α
sin2 θWM2 A{u,c,t} = A{d,s,b} = A{e,µ,τ} = 300 GeV
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Fig. 3. Born (dashed line) and one-loop masses (solid line) of the b̃1-squark and the mass of the b̃2-squark (dotted line) as a
function of the A-parameter Ad or Au. The parameters have been chosen as Mf̃R

= ML = 300 GeV for all generations. It is
assumed that Ad = As = Ab and Au = Ac = At. When Ad is varied then Au = 300 GeV and vice versa

and Z-bosons and photons. Since the strong and the elec-
troweak contributions have opposite signs, the total cor-
rection adds up to 5% (16 GeV) and 1% (4.2 GeV) of the
Born mass for MLq̃3

= 300 GeV and MLq̃3
= 500 GeV, re-

spectively.
Finally, the dependence on the A-parameters is con-

sidered. As an illustration, the A-parameter dependence
is shown for the b̃i-squarks in Fig. 3. Varying the parame-
ter Ad changes the mixing of the bottom squarks, an effect
which is suppressed by mf in the light generations. The
corrections to the Born mass show a weak dependence on
the parameter Ad. They decrease from 14 GeV to 9 GeV
in the Ad range of Fig. 3.

The Born masses of the bottom squarks do not depend
on the parameter Au, but one can see a slight decrease of
the corrections to the mass of b̃1 when Au is increased. Au

changes the mixing and the mass splitting of the up-type
squarks, which influences slightly the size of the mass shift.

5 Conclusion

We have presented a complete on-shell renormalization
of the scalar-fermion sector of the MSSM based on the
entire set of one-loop diagrams, treating all masses as
pole masses and with renormalization constants that al-
low one to formulate the sfermion self-energies as matrices
which become diagonal for external momenta on-shell. The
renormalization conditions are specified to fix the counter-
terms of the basic soft-breaking parameters, respecting
SU(2)-invariance. As an application, we have calculated
the sfermion-mass spectrum at the one-loop level. Three
of the four squark tree-level masses and two of the three
slepton tree-level masses can be made equal to the corre-
sponding one-loop pole masses. The residual squark and
slepton mass, instead, receives a mass shift at one-loop
level. These mass shifts are rather small for sleptons, but
they can be sizable, of the order of 5%, for squarks. Thus,
especially for the third generation, this mass shift has to
be taken into account in precision calculations.
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